数学与应用数学系

副教授

陈海苗

理学博士 副教授
通讯地址:北京市海淀区阜成路11号北京工商大学理学院数学系
电子信箱:chenhaimiao@btbu.edu.cn
 
个人简历: 
2002-2006, 于浙江大学数学与应用数学专业毕业, 获理学学士学位
2006-2008, 于浙江大学基础数学专业毕业, 获理学硕士学位
2008-2011, 于中国科学院数学与系统科学研究院基础数学专业毕业, 获理学博士学位
2011-2013, 于北京大学数学科学学院进行博士后研究工作
2013-, 于北京工商大学理学院数学系授课
 
主要研究领域:
拓扑学  (包括: 代数拓扑, 低维拓扑, 拓扑图论) 
 
主讲课程:
本科: 《常微分方程》、《数学建模》;研究生:《数学专业英语》
 
主要科研项目:
12015-2017年:拓扑量子场论在3维流形映射度问题中的应用,国自科青年项目,主持,(已结题)。
22018-2021年:低维拓扑中的一些量子不变量,国自科面上项目(合作),课题负责人。
 
近年发表的主要论文:  
1. Haimiao Chen, Applying TQFT to count regular coverings of Seifert 3-manifolds, Journal of Geometry and Physics (SCI), vol.62, no.6, (2012) 1347-1357.
2.Haimiao Chen, Lifting automorphisms along abelian regular coverings of graphs, Discrete Mathematics (SCI), vol.313, no.14, (2013) 1535-1539.
3.Haimiao Chen, Enumerating typical abelian coverings of Cayley graphs, Discrete Mathematics (SCI), vol.313, no.14, (2013) 1503-1510.
4.Haimiao Chen, Hao Shen, How to find G-admissible coverings of a graph? Linear Algebra and its Applications (SCI), vol.438, no.8, (2013) 3303-3320.
5.Haimiao Chen, Counting homotopy classes of mappings via Dijkgraaf-Witten invariants, Topology and Its Applications (SCI), vol.161, no.1, (2014) 316-320.
6.Haimiao Chen, Jin Ho Kwak, Lifting graph automorphisms along regular solvable covers, European Journal of Combinatorics (SCI), vol.51, (2016) 519-532.
7.Haimiao Chen, Regular balanced Cayley maps on PSL(2,p), Discrete Mathematics (SCI), vol.339 (2016), 2933-2940.
8.Haimiao Chen, The Dijkgraaf-Witten invariants of Seifert 3-manifolds with orientable bases, Journal of Geometry and Physics (SCI), vol.108 (2016), 38--48.
9.Haimiao Chen, Quotients of polynomial rings and regular t-balanced Cayley maps on abelian groups, European Journal of Combinatorics (SCI), vol.65 (2017),45-58.
10.Haimiao Chen, Yueshan Xiong, Zhongjian Zhu, Automorphisms of metacyclic groups, Czechoslovak Mathematical Journal (SCI), vol.68 (2018), 803-815.
11.Haimiao Chen, Trace-free SL(2,C)-representations of Montesinos links, Journal of Knot Theory and Its Ramifications (SCI), vol.27 (2018), no.8, 1850050 (10 pages).
12.Haimiao Chen, Character varieties of odd classical pretzel knots, International Journal of Mathematics (SCI), vol.29, (2018), no.9, 1850060 (15 pages).