孔令宝


 

孔令宝,男,博士,副教授。

通讯地址:北京工商大学物理学院,邮编:100048
电子信箱:konglingbao@btbu.edu.cn
电话:010-81353607; 传真:010-81353377

 
个人简历:
2016.7-至今北京工商大学理学院物理系
2014.4-2016.7北京大学信息学院电子系博士后
2008.05-2014-4北京化工大学理学院电子科学与技术系讲师
2005/3 - 2008/3,中国科学院电子学研究所,物理电子学,博士,
2001/9 - 2004/7,北京大学,力学系流体力学专业,硕士,
1995/9 - 1999/7,南京大学,物理系微电子学与固体电子学专业,学士
 
科研方向:
1)一种新型高功率微波源器件理论与开发研究
目前,传统微波器件(速调管等)及回旋管类型器件的技术相对成熟。这两类器件都可以输出很大的峰值功率:前者带宽小,后者带宽大;前者易小型化,后者体积庞大。由于在雷达技术、微波武器及电子对抗等领域,迫切需要易于集成化的宽带高功率微波器件,导致对基于反常多普勒效应的电子回旋脉塞的理论研究成为微波源领域的一个热点问题。
本人从2005年开始一直从事基于反常多普勒效应的高功率微波源的理论研究及数值模拟工作,曾参与多项自然基金项目的研究工作,积累了本领域丰富的研究经验。在无界空间中基于反常多普勒效应的电子回旋脉塞的互作用机理、色散关系、大信号理论及自洽非线性理论研究方面获得国内外领先的多项科研成果,在本领域的国际知名期刊Applied Physics LettersPhysics of Plasmas Journal of Applied Physics等发表学术论文多篇。
2) 太赫兹波段的表面等离子激元激发与放大的研究
由于电磁场与金属表面自由电子振荡的强烈耦合,光能够沿着金属表面传播(且局域于表面附近亚波长的尺度范围),这一电磁表面模被称为表面等离子激元。
开展了基于金属超材料结构的表面等离子激元的太赫兹源的理论研究工作:金属表面等离激元(SPP)与相对论电子的相互作用可导致能量在两者之间的转移。我们提出利用梯度的、亚波长的超构表面材料来增强场与电子的耦合作用。超构表面材料能够支持一种特殊的电磁表面模—伪表面等离激元(SSP),它具有较小的相速度(对应较大的折射率)和较大的切向电场。这提供了一个独特的类真空环境,其中电子的运动速度能够与电磁速度相当,而且两者通过切向电场可发生强烈的耦合。我们利用动力学耦合方程研究表明,利用梯度的超构表面可以调控SSP的相速度,实现SSP与相对论电子的准速度匹配(即实现两者的同步减速)。这样,相对论电子的能量能够被持续、有效地抽取,从而实现太赫兹波段SSP的高效增长或放大。
 
主要SCI论文与专利情况
  
[1] Ling-Bao Kong, Cheng-Ping Huang, Chao-Hai Du, Pu-Kun Liu, and Xiao-Gang Yin. Enhancing spoof surface-plasmons with gradient metasurfaces, Scientific Reports, 2015, 5: 8772. (影响因子:5.078)
[2] Ling-Bao Kong, Zhaoyang Chen, Pu-Kun Liu, and M. Y. Yu. Charged particle acceleration through decreasing refractive index,Applied Physics Express, 2015, 8: 026101. (影响因子:2.567)
[3] Chao-Ran Xie, Ling-Bao Kong*, Pu-Kun Liu, Chao-Hai Du, Zhi-Ling Hou, Hai-Bo Jin. Efficiency enhancement of anomalous-Doppler electron cyclotron masers with tapered magnetic field, Physics of Plasmas, 2014, 21: 023117. (通信作者)(影响因子:2.249)
[4] Ling-Bao Kong, Zhi-Ling Hou, Jian Jing, Hai-Bo Jin, Chao-Hai Du. Enhancing the efficiency of slow-wave electron cyclotron masers with the tapered refractive index, Physics of Plasmas, 2013, 20: 043107. (影响因子:2.249)
[5] Ling-Bao Kong, Hong-Yu Wang, Zhi-Ling Hou, Hai-Bo Jin, Chao-Hai Du. The nonlinear theory of slow-wave electron cyclotron masers with inclusion of the beam velocity spread, Annals of Physics, 2013, 339: 588. (影响因子:3.065)
[6] Ling-Bao Kong, Hong-Yu Wang, Zhi-Ling Hou, Hai-Bo Jin, The self-consistent nonlinear theory of charged particle beam acceleration by slowed circularly-polarized electromagnetic wave, Plasma Science and Technology, 2013, 15(12): 1174. (影响因子:0.596)
[7] Ling-Bao Kong. Linear wave dispersion relation of a magnetized relativistic rectilinear electron beam-dielectric system, Communications in Nonlinear Science and Numerical Simulation, 2012, 17: 650. (影响因子:2.569)
[8] Ling-Bao Kong, Zhi Li, Chao-Ran Xie, and Zhi-Ling Hou. The resonance interaction of relativistic electron with circularly polarized waves, Communications in Nonlinear Science and Numerical Simulation, 2012, 17: 1104. (影响因子:2.569)
[9] Ling-Bao Kong, Zhi-Ling Hou, and Chao-Ran Xie. The self-consistent nonlinear theory of electron cyclotron maser based on anomalous doppler effect, Applied Physics Letters, 2011, 98: 261502. (影响因子:3.515)
[10] Ling-Bao Kong, Zhi-Ling Hou. Numerical simulations of nonlinear dynamics of electron cyclotron maser with a straight beam, Chinese Physics Letters, 2011, 28: 117702. (影响因子:0.924)
[11] Ling-bao Kong and Pu-Kun Liu. Analytical solution for relativistic charged particle motion in a circularly polarized electromagnetic wave, Physics of Plasmas, 2007, 14(6): 063010. (影响因子:2.249)
[12] Ling-bao Kong, Pu-Kun Liu, and Liu Xiao. Nonlinear analysis of electron cyclotron maser based on anomalous Doppler effect, Physics of Plasmas, 2007, 14: 053108. (影响因子:2.249)
[13] Ling-bao Kong, Chao-Hai Du, Pu-Kun Liu, and Liu Xiao. Instability of relativistic electron beam-dielectric system as a mechanism for microwave generation, Journal of Applied Physics, 2007, 102(10): 103305. (影响因子:2.185)
[14] Chao-Hai Du, Xiang-Bo Qi, Ling-Bao Kong, Pu-Kun Liu, Zheng-Di Li, Shou-Xi Xu, Zhi-Hui Geng, and Liu Xiao. Broadband Tunable Pre-Bunched Electron Cyclotron Maser for Terahertz Application,IEEE Transactions on Terahertz Science and Technology, 2015, 5, 236-243. (影响因子:4.342)
[15] Zhi-Ling Hou, Min Zhang, Ling-Bao Kong, Hui-Min Fang, Zhong-Jun Li, Hai-Feng Zhou, Hai-Bo Jin and Mao-Sheng Cao. Microwave permittivity and permeability experiments in high-loss dielectrics: Caution with implicit Fabry-Pérot resonance for negative imaginary permeability,Applied Physics Letters, 2013, 103: 162905. (影响因子:3.515)
[16] Zi-Gang Yuan, Ping Zhang, Shu-Shen Li, Jian Jing, and Ling-Bao Kong. Scaling of the Berry phase close to the excited-state quantum phase transition in the Lipkin model, Physical Review A, 2012, 85: 044102. (影响因子:3.042)
[17] X. Li, L.-B. Kong, Z.-L.Hou and J.-D.Shao. The application of laser induced damage spot size effect for laser conditioning mechanism, The European Physical Journal - Applied Physics, 2012, 59: 20301. (影响因子:0.789)
[18] Lei Xu, Jian Jing, Zi-Gang Yuan, Ling-Bao Kong, Zheng-Wen Long. Yangian symmetries and integrability of the Dirac equation with spin symmetry, Annals of Physics, 2013, 329: 158.(影响因子:3.065)
[19] Zhi-Ling Hou, Hai-Feng Zhou, Ling-Bao Kong, Hai-Bo Jin, Xin Qi, Mao-Sheng Cao. Enhanced ferromagnetism and microwave absorption properties of BiFeO3 nanocrystals with Ho substitution, Materials Letters, 2012, 84: 110. (影响因子:2.269)
[20] Zhi-Ling Hou, Ling-Bao Kong, Zhou Hai-Feng, Ke-Tao Zhan, Xin Qi. The comprehensive retrieval method of electromagnetic parameters using scattering parameters of metamaterials for the two choices of the time-dependent factors, Chinese Physics Letters, 2012, 29: 017701. (影响因子:0.924)
[21] Cheng-Ping Huang, Xiao-Gang Yin, Ling-bao Kong, and Yong-yuan Zhu. Interactions of nanorod particles in the strong coupling regime, J. Phys. Chem. C, 2010, 114: 21123. (影响因子:4.835)
[22] Hai-Feng Zhou, Zhi-Ling Hou, Ling-Bao Kong, Hai-Bo Jin, Mao-Sheng Cao and Xin Qi. Enhanced magnetization and improved leakage in Er doped BiFeO3 nanoparticles, Physica Status Solidi A, 2013, 210: 809. (影响因子:1.525)
[23] Muhammad Rizwana, Yan-Kun Dou, Hai-Bo Jin, Zhi-Ling Hou, Ling-Bao Kong, Jing-Bo Li, Faheem K. Butt and FidaRehman. Design of a novel negative refractive index material based on numerical simulation,The European Physical Journal - Applied Physics, 2013, 63: 10502. (影响因子:0.789)
[24] Wang Hong-Yu, Jiang Wei, Sun Peng, and Kong Ling-Bao. On the energy conservation electrostatic particle-in-cell/Monte Carlo simulation: Benchmark and application to the radio frequency discharges,Chinese Physics B, 2014, 23: 035204. (影响因子:1.392)
[25] Muhammad Rizwan, Hai-Bo Jin, FidaRehman, Zhi-Ling Hou, Ling-Bao Kong, Jing-Bo Li, Faheem K. Butt, Yan-Kun Dou, Zulfiqar Ali, and Muhammad Tahir. Numerical Study of an A-Shape Negative Refractive Index Material,Chinese Journal of Physics, 2014, 52: 1521. (影响因子:0.431)
[26] 侯志灵,周海峰,孔令宝,一种钬掺杂铁酸铋多铁材料及其制备方法,国家发明专利,No 201110287561.0
 
 
科研项目情况
1.项目来源:国家自然科学基金(面上项目),(总经费85.8万,2016.01~2019.12)。批准号:11575015。项目名称:基于类表面等离子激元的太赫兹Cherenkov辐射源的研究。项目负责人。
2.项目来源:中国博士后科学基金会(8万,第56批,一等资助)。批准号:2014M560019。项目名称:基于表面等离子激元与电子束互作用的太赫兹源的研究。项目负责人。
3.项目来源:国家自然科学基金(重点项目)(直接经费305万,2016.01~2020.12)。批准号:61531002。项目名称:面向生物医学应用的小型化太赫兹回旋管理论与关键技术研究。项目参与人。
4. 项目来源:国家自然科学基金(面上项目)(4万,2012.06~2014.12)。批准号:51172026。项目名称:GHz波段高导热氧化铝基微波衰减陶瓷的设计与结构优化。子课题负责人。
5.项目来源:中央高校科研业务费项目专项基金(3万,2008.07~2010.06)。批准号:QN0808项目名称:一种新型高功率毫米波源的理论研究。项目负责人。
6.项目来源:国家自然科学基金(面上项目),(96万,2015.01~2018.12)批准号:61471007。项目名称:太赫兹回旋管中若干物理问题的研究。主要参与人(排名第二。
7.项目来源:国家自然科学基金(青年基金)(25万,2012.01~2014.12)。批准号: 51102007。项目名称: 铁酸铋基纳米复合材料的高温电磁特性及微波吸收增强研究。主要参与人(排名第二)。
8.项目来源:国家自然科学基金(青年基金)(25万,2013.01~2015.12)。批准号:11204012。项目名称: 低维体系中量子信息概念的临界行为研究。主要参与人(排名第二)。
9.项目来源:中央高校科研业务费项目专项基金(10万,2011.01~2012.12)。批准号:ZZ1131。项目名称:多铁性纳米材料制备、介电响应与微波吸波性能。主要参与人(排名第二)。
 

学校主页 | 本站首页 | 资料下载 | 在线留言
阜成路校区:010-68985292  良乡校区:010-81353678 邮箱:songsx@btbu.edu.cn